1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
| from __future__ import print_function import shutil import os.path import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data
EXPORT_DIR = './model'
if os.path.exists(EXPORT_DIR): shutil.rmtree(EXPORT_DIR)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Parameters learning_rate = 0.001 training_iters = 200000 batch_size = 128 display_step = 10
# Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units
# tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
# Create some wrappers for simplicity def conv2d(x, W, b, strides=1): # Conv2D wrapper, with bias and relu activation x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME') x = tf.nn.bias_add(x, b) return tf.nn.relu(x)
def maxpool2d(x, k=2): # MaxPool2D wrapper return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
# Create Model def conv_net(x, weights, biases, dropout): # Reshape input picture x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer conv1 = conv2d(x, weights['wc1'], biases['bc1']) # Max Pooling (down-sampling) conv1 = maxpool2d(conv1, k=2)
# Convolution Layer conv2 = conv2d(conv1, weights['wc2'], biases['bc2']) # Max Pooling (down-sampling) conv2 = maxpool2d(conv2, k=2)
# Fully connected layer # Reshape conv2 output to fit fully connected layer input fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]]) fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1']) fc1 = tf.nn.relu(fc1) # Apply Dropout fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction out = tf.add(tf.matmul(fc1, weights['out']), biases['out']) return out
# Store layers weight & bias weights = { # 5x5 conv, 1 input, 32 outputs 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), # 5x5 conv, 32 inputs, 64 outputs 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), # fully connected, 7*7*64 inputs, 1024 outputs 'wd1': tf.Variable(tf.random_normal([7 * 7 * 64, 1024])), # 1024 inputs, 10 outputs (class prediction) 'out': tf.Variable(tf.random_normal([1024, n_classes])) }
biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) }
# Construct model pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables init = tf.initialize_all_variables()
# Launch the graph with tf.Session() as sess: sess.run(init) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_x, batch_y = mnist.train.next_batch(batch_size) # Run optimization op (backprop) sess.run(optimizer, feed_dict={x: batch_x, y: batch_y, keep_prob: dropout}) if step % display_step == 0: # Calculate batch loss and accuracy loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x, y: batch_y, keep_prob: 1.}) print("Iter " + str(step * batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + \ "{:.5f}".format(acc)) step += 1 print("Optimization Finished!")
# Calculate accuracy for 256 mnist test images print("Testing Accuracy:", \ sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})) WC1 = weights['wc1'].eval(sess) BC1 = biases['bc1'].eval(sess) WC2 = weights['wc2'].eval(sess) BC2 = biases['bc2'].eval(sess) WD1 = weights['wd1'].eval(sess) BD1 = biases['bd1'].eval(sess) W_OUT = weights['out'].eval(sess) B_OUT = biases['out'].eval(sess)
# Create new graph for exporting g = tf.Graph() with g.as_default(): x_2 = tf.placeholder("float", shape=[None, 784], name="input")
WC1 = tf.constant(WC1, name="WC1") BC1 = tf.constant(BC1, name="BC1") x_image = tf.reshape(x_2, [-1, 28, 28, 1]) CONV1 = conv2d(x_image, WC1, BC1) MAXPOOL1 = maxpool2d(CONV1, k=2)
WC2 = tf.constant(WC2, name="WC2") BC2 = tf.constant(BC2, name="BC2") CONV2 = conv2d(MAXPOOL1, WC2, BC2) MAXPOOL2 = maxpool2d(CONV2, k=2)
WD1 = tf.constant(WD1, name="WD1") BD1 = tf.constant(BD1, name="BD1")
FC1 = tf.reshape(MAXPOOL2, [-1, WD1.get_shape().as_list()[0]]) FC1 = tf.add(tf.matmul(FC1, WD1), BD1) FC1 = tf.nn.relu(FC1)
W_OUT = tf.constant(W_OUT, name="W_OUT") B_OUT = tf.constant(B_OUT, name="B_OUT")
# skipped dropout for exported graph as there # is no need for already calculated weights
OUTPUT = tf.nn.softmax(tf.matmul(FC1, W_OUT) + B_OUT, name="output")
sess = tf.Session() init = tf.initialize_all_variables() sess.run(init)
graph_def = g.as_graph_def() tf.train.write_graph(graph_def, EXPORT_DIR, 'mnist_model_graph.pb', as_text=False)
# Test trained model y_train = tf.placeholder("float", [None, 10]) correct_prediction = tf.equal(tf.argmax(OUTPUT, 1), tf.argmax(y_train, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print("check accuracy %g" % accuracy.eval( {x_2: mnist.test.images, y_train: mnist.test.labels}, sess))
|